Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity
نویسندگان
چکیده
High relative air humidity (RH ≥ 85%) during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV) 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA]) enhancing stomatal functioning. Pot rose 'Toril' was grown at moderate (61%) or high (92%) RH combined with a continuous low (0.08 m s(-1)) or high (0.92 m s(-1)) MOV. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA].
منابع مشابه
ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity
Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this stud...
متن کاملThe role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity.
In this study, the role of abscisic acid (ABA) in altered stomatal responses of Tradescantia virginiana leaves grown at high relative air humidity (RH) was investigated. A lower ABA concentration was found in leaves grown at high RH compared with leaves grown at moderate RH. As a result of a daily application of 20 microM ABA to leaves for 3 weeks during growth at high RH, the stomata of ABA-tr...
متن کاملThreshold response of stomatal closing ability to leaf abscisic acid concentration during growth
Leaf abscisic acid concentration ([ABA]) during growth influences morpho-physiological traits associated with the plant's ability to cope with stress. A dose-response curve between [ABA] during growth and the leaf's ability to regulate water loss during desiccation or rehydrate upon re-watering was obtained. Rosa hybrida plants were grown at two relative air humidities (RHs, 60% or 90%) under d...
متن کاملFern Stomatal Responses to ABA and CO2 Depend on Species and Growth Conditions.
Changing atmospheric CO2 levels, climate, and air humidity affect plant gas exchange that is controlled by stomata, small pores on plant leaves and stems formed by guard cells. Evolution has shaped the morphology and regulatory mechanisms governing stomatal movements to correspond to the needs of various land plant groups over the past 400 million years. Stomata close in response to the plant h...
متن کاملResponses of sap flow, leaf gas exchange and growth of hybrid aspen to elevated atmospheric humidity under field conditions
An increase in average air temperature and frequency of rain events is predicted for higher latitudes by the end of the 21st century, accompanied by a probable rise in air humidity. We currently lack knowledge on how forest trees acclimate to rising air humidity in temperate climates. We analysed the leaf gas exchange, sap flow and growth characteristics of hybrid aspen (Populus tremula × P. tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015